在肥胖症中，多巴胺在D1, D2, D3, or D4受体上的作用对换气和运动的调节

計畫類別：個別型計畫
計畫編號：
執行期間：91年08月01日至92年07月31日
執行單位：中山醫學大學物理治療學系

計畫主持人：李信達

報告類型：精簡報告
處理方式：本計畫可公開查詢

中華民國92年10月31日
ABSTRACT
To investigate the hypothesis that the impaired respiratory drive noted in morbid obesity was attributed to altered dopaminergic mechanisms acting on peripheral and/or central chemoreflex sensitivity, 14 obese and 14 lean Zucker (Z) rats were studied at 11~12 weeks of age. Ventilation \((V_E) \) was measured by the barometric technique during normoxic (21% \(O_2 \)) and hypoxic (10% \(O_2 \)) exposures following the administration of vehicle (control), haloperidol (D2 central and peripheral antagonist HAL), or domperidone (D2 peripheral antagonist DOM), and intracranial injection of vehicle, dopamine D1 antagonist (SCh 23390), and D3 antagonist (U-99194A Maleate). HAL, DOM, SCh 23390 and U-99194A Maleate did not affect \(V_E \) during normoxia compared to control in both lean and obese rats. DOM significantly increased \(V_E \) during hypoxia compared to control in obese but not lean rats. HAL significantly decreased \(V_E \) during hypoxia compared to control in lean but not obese rats. In both lean and obese rats, SCh 23390 and U-99194A Maleate did not affect \(V_E \) in response to hypoxia. Our major findings suggest that peripheral chemosensitivity to hypoxia in obese Z rats is reduced as a result of an increased dopaminergic D2 modulation on peripheral chemoreceptors. Central D1, D2, D3 modulation of ventilatory response to hypoxia were not found in lean and obese rats.

Keywords: dopamine, respiration, obesity
Thus, dopamine appears to exert contrasting effects of ventilatory regulation, a depressive modulation of ventilation on peripheral chemoreflex drive and a stimulatory modulation of ventilation on the central nervous system (CNS) (3, 10, 29).

The obese Zucker (Z) rat, a genetic model of morbid obesity, presents many of the same ventilatory abnormalities as observed in obese humans, including a depressed respiratory drive (8, 14, 15, 19). Obese Z rat display a reduction in brain DA metabolite content compared to lean rats (20). Indeed, the altered dopaminergic function, especially in the hypothalamic dopaminergic system, appears to contribute to the dysfunctional eating patterns noted in obese Z rats and is believed to predispose some individuals to obesity (9). Previously, we have suggested that several neuromodulators, such as endorphins, GABA, nitric oxide and glutamate may partially account for the altered ventilatory response observed in obese Z rats (14, 15, 16, 24). The role of dopamine acting D1 D2, D3 receptor in mediating breathing control in obesity has, to our knowledge, not been previously investigated.

Since dopamine plays a crucial role in ventilatory response and altered dopamine mechanisms have been noted in obesity, we hypothesized that the impaired respiratory drive noted in obese Z rats could be linked in part to altered dopaminergic mechanisms acting on peripheral and/or central chemoreflex sensitivity. To examine our hypothesis, we measured ventilation during normoxia and hypoxia in obese Z rats following the systemic administration of either vehicle (control), haloperidol (D2 central and peripheral antagonist HAL), or domperidone (D2 peripheral antagonist DOM), and intracranial injecton of dopamine antagonists (D1 antagonist: SCH 23390; D3 antagonist: U-99194A Maleate).

METHODS
Animals. 14 pairs of the lean (Fa/?) and obese (fa/fa) male Z rats were studied at 11-12 week of age. Animals were born by breeders purchased from Charles River Lab in France. One lean and one obese rat were housed per cage. Ambient temperature was maintained at 24 °C, and the animals were kept on an artificial 12-h light-dark cycle. The light period began at 7:00 AM. Rats were provided with standard laboratory chow and water ad libitum. All protocols were approved by the Institutional Animal Care and Use Committee of Chang Shan Medical University, Taichung, Taiwan.

Five days before the experiments, the rats were deeply anesthetized and placed in a stereotaxic frame for guide cannula implantation. A small hole was drilled in the occipital skull. A small cannula (22 G) will be then surgically implanted at lateral cerebral ventricle. The guide cannula will be fixed to the skull with methacrylate and screws on skull closed with an occluder until time of experimentation.

Ventilation was measured using by the barometric technique which have been previously described (14, 15, 16). A cylindrical Plexiglas chamber with a volume of 4 liters was used for the measurements of ventilation. The rat was placed in the chamber within a restrainer, which did not permit backward rotation. The animal chamber had an inlet tube that was connected to pressurized air tanks. Inlet flow was regulated at 2 l/min by a flow meter. An O2 analyzer and an CO2 analyzer measured the concentrations of inflowing or outflowing O2 and CO2, respectively. To measure ventilation, the chamber was completely sealed after momentarily interrupting the flow through it, and the oscillations in pressure caused by breathing were recorded by a sensitive pressure transducer. The signal was received, amplified and displayed on an oscillographic strip chart recorder.

To reduce the stress level during the experiment, all animals were habituated to an intraperitoneal injection (i.p.) of 0.4 ml of saline, to the insertion of the thermoprobe, and to the restraining device within the chamber for 60 min on two successive days prior to the first experimental study. Each animal was tested at 3-day intervals following an i.p. injection of equal volumes
of vehicle (dimethyl sulfoxide DMSO, 1 ml/kg), haloperidol (HAL, 1 mg/kg, central and peripheral D2 receptor antagonist), or domperidone (DOM, 0.5 mg/kg, peripheral D2 receptor antagonist). Pulmonary parameter (VE, VT, f, T1, T2, Ttot, VT/T1), metabolic rate (VO2, VCO2), VE/VO2, VE/VCO2, and body temperature (Tb) were tested after intracranial microinjecting certain amount of blind solutions, namely either vehicle, dopamine D1 antagonist (SCh 23390), and D3 antagonist (U-99194A Maleate) under normoxia and hypoxia.

After the administration of the agent, the rat was placed into the barometric chamber within the restrainer and exposed to normoxia (21% O2, balance N2) for 30 min followed by hyperoxia (100% O2) for 3 min, normoxia for 10 min, and hypoxia (10% O2, balance N2) for 3 min. Thereafter, the rat exposed to hyperoxia (100% O2) for 5 min. Ventilatory data were collected during the last minute of each gas exposure.

Statistical Analysis. The differences in VE responses to hyperoxia/hypoxia between lean and obese Z rats were analyzed by factorial analysis of variance (ANOVA) concerning phenotype and gas exposure. The differences between data among the responses following each agent administration within a single group were analyzed by one-way ANOVA. When significance was indicated, a post-hoc t-test with Bonferroni's correction for multiple comparisons was used for point-by-point differences. In all cases, a P value < 0.05 was considered statistically significant. All data presented in the text, Tables and Figures represent means ± SD.

RESULTS

The changes in VE, f and VT during hyperoxia, normoxia and hypoxia exposure following vehicle or HAL injection. In lean Z rats during hyperoxia as well as normoxia, the administration of HAL did not change VE although f decreased and VT increased. During hypoxic exposure, HAL administration elicited a significant depression in VE (P < 0.05) due to a decrease in f and no changes in VT in lean rats. In contrast, in obese rats during hypoxia exposure, HAL did not evoke significant depression in VE due to an increase in VT.

DOM did not change VE, f and VT during hyperoxia and hypoxia in lean rats, compared with control values. In obese rats DOM significantly increased VT in response to hypoxia compared with vehicle control without changes in f, resulting in a rise in VE compared with control. Moreover, DOM did not change any parameters during hyperoxia. Incracranial injection of SCh 23390 and U-99194A Maleate did not change VE, f and VT during hyperoxia and hypoxia in lean and obese rats.

DISCUSSION

Since HAL (D2 central and peripheral antagonist) crosses the BBB, it produces effects that are a combination of peripheral chemoreceptor stimulation and central dopaminergic neuron inhibition. In the
The present study, both lean and obese HAL-treated rats decreased f and increased VT resulting in an unchanged VE during hyperoxic and normoxic breathing. These results are in agreement with a previous study in rats showing that the intracerebroventricular injection of HAL (D2 central and peripheral antagonist) elicited a depression in f and an increase in VT, suggesting a tonic influence on dopamine receptors involved in central respiratory regulation (10). DOM (D2 peripheral antagonist), on the other hand, does not cross the BBB thus its effects are limited to peripheral chemoreceptors. Since DOM (D2 peripheral antagonist) administration did not affect f, VT, and VE in both lean and obese rats during hyperoxic and normoxic breathing, endogenous dopamine acting on D2 receptors do not modulate ventilation under these conditions. Our findings are consistent with a report in healthy humans reporting that DOM administration produced no significant change in ventilation during normoxic breathing (6).

As stated earlier, HAL crossing BBB antagonizes both central and peripheral D2 receptors, which consists of reversing D2-mediated peripheral ventilatory stimulation and central ventilatory depression. Indeed, it has been demonstrated that HAL (D2 central and peripheral antagonist) greatly attenuates the ventilatory response to hypoxia despite an increase in carotid chemoreceptor activity, suggesting that dopamine acts as an excitatory neurotransmitter in the integrating centers projecting from peripheral chemoreceptor activity (25). In lean rats, HAL (D2 central and peripheral antagonist) significantly decreased VE during hypoxia compared with vehicle control, suggesting that the central inhibitory effect on ventilation by HAL (D2 central and peripheral antagonist) was greater than that of the peripheral stimulation. In contrast, HAL (D2 central and peripheral antagonist) administration had a no (minimal) effect on VE in obese Zucker rats, which implying that either D2-mediated central ventilatory stimulation is reduced and/or D2-mediated peripheral ventilatory depression is increased during acute hypoxic exposure.

It is known that the peripheral D2 receptor antagonist, DOM, stimulates ventilation and carotid body chemoreceptor afferent neural activity (13, 29). Moreover, in normal awake cats and goats, DOM (D2 peripheral antagonist) increases ventilation in response to hypoxia by removing tonic inhibition from endogenous carotid body D2 receptors (13, 27). We noted that in lean rats ventilation in response to acute hypoxia did not significantly increase following treatment with DOM, suggesting no tonic peripheral inhibitory ventilatory modulation by D2 in lean rats. Walsh et al showed that, in humans, half of the population did not augment their hypoxic ventilatory response when pretreated with DOM, suggesting a wide variability in individual hypoxic sensitivities in response to DOM (28). Tatsumi et al also demonstrated in cats that peripheral chemoreceptor responsiveness to hypoxia was highly variable among individual cats as well as was the ventilatory response to DOM (27).

Since intracranial injection of Sch 23390 and U-99194A Maleate did not change VE, f and VT during hyperoxia and hypoxia in lean and obese rats. We can speculate Sch 23390 and U-99194A Maleate cause the restless movement and disturb the recording of ventilatory parameter. This is major limitation in the observation of intracranial injection of Sch 23390 and U-99194A.

Our findings from both the HAL and DOM studies suggest that obese rats have an enhanced dopaminergic modulation acting on D2 receptor of their peripheral chemoreceptors compared with their lean counterparts. The combined evidence, therefore, suggests that peripheral chemosensitivity to hypoxia in obese rats may be blunted as a result of an abnormality originating from dopaminergic mechanisms acting D2 receptors.

In conclusion, the present results suggest that peripheral chemosensitivity to
hypoxia in obese Z rats may be blunted as a result of altered D2 dopaminergic mechanisms.

REFERENCES